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 ABSTRACT  

This research aims to analyze the performance of Convolu<onal Neural Network (CNN) 

as an automated tool applied to pavement surface crack detec<on. A group of pictures 

from different segments of chip seal pavement, acquired from photographic recording 

systems mounted on specific vehicles, was evaluated. An open-source machine learning 

library PyTorch available in the Python script language was applied to evaluate the im-

ages. The influence of three techniques used to process the pictures and the complexity 

of neural networks on the crack iden<fica<on performance are discussed as well. The 

accuracy, precision, recall, and F1 score metrics were used to assess the neural network 

performance. The results show a good performance of the selected algorithm for pave-

ment crack detec<on based on the observed metrics. Furthermore, it was found that 

the complexity of the neural network is an important factor that should be considered 

during the image classifica<on process. 

 

RESUMO   

Neste ar<go é avaliado o potencial de Redes Neurais Convolucionais (RNC) como ferra-

menta automa<zada para detecção de trincas em superHcies de pavimentos. Foram u<-

lizadas fotografias da superHcie de diferentes segmentos de um pavimento do <po Che-

apseal, ob<das a par<r de câmeras fotográficas montadas em veículos. As imagens fo-

ram avaliadas a par<r da proposta do uso de duas arquiteturas de redes neurais convo-

lu<onais e implementadas com o auxílio da biblioteca de aprendizado de máquina 

PyTorch, o qual possui código aberto e disponível na forma de script em linguagem 

Python. As imagens foram processadas com o uso de três técnicas diferentes, com o 

intuito de avaliar a influência da complexidade dos algoritmos propostos. Para análise 

da performance da rede neural, foram u<lizadas como métricas de avaliação a acurácia, 

a precisão, o recall e o F1 score. Os resultados apontaram que a arquitetura da rede 

neural escolhida apresentou desempenho sa<sfatório na detecção de trincas, bem 

como indicam que a complexidade da rede é um dos fatores a ser considerado durante 

o processo de classificação das imagens. 
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1. INTRODUCTION AND BACKGROUND 

The pavement distress evaluation is a crucial stage of implementing Pavement Management 
System (PMS) at the network analysis level. Despite needing fast and accurate data acquisition 
during the  ield inspections, the distress evaluation in Brazil still involves manual procedures, 
which are carried out by trained professionals over randomly selected sections. The collected 
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and classi ied data allow the pavement managers to objectively evaluate pavement surface con-
dition. However, this procedure usually demands a considerable time of inspection and  
is susceptible to human error, which represents considerable costs and does not cover all the 

network extension (Li et	al., 2017; Sun et	al., 2009).  

 The recent advances in sensors, such as photographic cameras and LiDAR (Light Detection 
And Ranging) devices, combined with advances in data storage cloud computing and data stor-
age, have allowed performing surface inspection of the entire pavement network in an auto-
mated manner. Additional bene its of automated pavement distress assessment include mini-
mal traf ic impact, reduction of the inspector’s safety risks during the  ield operations, as well 
as faster evaluation process (Pierce and Weitzel, 2019). These bene its have encouraged trans-

portation agencies around the world to choose this automated process.  

 Although the semi-automated inspection systems can carry out a continuously high-quality 
photographic record over all the roadway network, the raw dataset is normally evaluated on the 
computer screen by handwork. And, considering the schedule, technical and economic issues 

required in the PMS, the manual distress evaluation of such large amount of data is not feasible. 

 The pavement surface evaluation by automated procedures has been a challenge for public 
and private segments in Brazil and many other countries. Even though recent advances on hard-
ware devices, such as laser, optical sensors and high-end computers, can provide basic require-
ments established in different protocols (e.g. NCHRP-531), the development of high-level intel-
ligent algorithms endures the highest challenge observed in the literature (Fan et	 al., 2018; 

Zhang et	al., 2017; Zhang et	al., 2016). 

 Recently, studies about ef icient high-level algorithms to detect the pavement surface distress 
have been the focus of different research (Fan et	al., 2018; Koch et	al., 2015; Ong et	al., 2011; 
Zhang et	al., 2017; Zhang et	al., 2016). Most of these studies have developed algorithms applied 
to identify potential cracks in images of pavement surface, which can recognize and quantify 
the variation of greyscale tones, using different  ilters, template matching, edge detection, and 

other image features.  

 The Machine Learning algorithms applied to automate the inspection of different infrastruc-
tures (pavements, bridges, dams, etc.) have become an appropriate option to improve the data 
analysis speed. This technique consists of data classi ication using deep learning algorithms, 
such as the Arti icial Neural Network (ANN). The ANN is a group of procedures that reproduce 
the way that a human brain processes any kind of information, which is composed of different 
connections, de ined as neurons or nodes (Haykin, 2009). For image classi ication, the Convo-
lutional Neural Networks (CNN), a type of ANN, is usually chosen. 

 The CNN architecture is analog to human brain neurons connection and inspired in the visual 
cortex framework. In this case, each neuron responds to stimuli only in restricted areas of  ield 
vision, which is de ined as the receptive  ield. The observed image in this space is considered 
mathematically as a pixel matrix. Every single matrix element can be divided into three color 
channels labeled as RGB (Red – R; Green – G; Blue – B). The convolution process as observed in 
Figure 1, allows for extracting exclusive features from the images through the cross-correlation 
between the  iltered (output) and the original (input) images, as well as a speci ic  ilter (kernel). 
Cross-correlation involves a group of matrix operations (Khan et	al., 2018), wherein after per-
formed several times can reduce the original matrix into a single vector or dense layer. Due to 
the matrix multiplication process between the input image and the  ilter, it is assumed that both 
matrices have the same element size. The elements of the new matrix (output) are summed up 
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to represent a unique result that describes a speci ic feature. This operation is repeated several 
times by the  ilter moves (stride operation) over the input matrix elements. Also, this process is 
useful for obtaining the compressed representation of image features, which is invariant to 
moderate object changes such as scale, pose (a combination of object orientation and position), 

and translation over the image. 
 

 
Figure 1. An example of filter application during a convolutional calculation. 

 

 The application of neural networks in different infrastructure condition evaluations, includ-
ing pavement distress surveys, has become more common recently. Previous studies (Fan et al., 
2018; Koch et al., 2015; Ong et al., 2011; Zhang et al., 2017; Zhang et al., 2016) have discussed 
the great potential of this technique in identifying different types of cracks on asphalt or con-
crete pavements. Moreover, the latest data storage capacity available in the cloud or personal 
computers associated with parallel computing has permitted acquiring and analyzing large da-

tasets of the roadway network.  

 This research discusses the performance of two CNN architectures, applied to the automated 
recognition of cracks in asphalt pavements, from a group of high-resolution images and based 
on statistical metrics. Besides, the effects of the application of different  ilters are analyzed, as 

well as the advantages and limitations of the proposed tool. 

2. METHODOLOGY 

2.1. 2D image dataset 

2D photographic records of the surface of chip seal (a common asphalt surface treatment tech-
nique) were used in this study. These images were taken from different segments in the RELLIS 
Campus, which is part of Texas A&M University in the USA. The downward-facing cameras 
mounted on vehicles were used for pavement surface images acquisition. Recently, it is common 
to have other sensor types mounted on these vehicles, such as GNSS (Global Navigation Satellite 
System) and inertial accelerometer for geolocation history, and digital laser pro iler for both 
pavement cross-section and roughness. The minimum requirements for pavement surface eval-
uation using semi or fully automated systems are illustrated in the literature (e.g. Pierce and 

Weitzel, 2019). 

 Six high-resolution images with 2048 x 8192 pixels in RGB (Red, Green, Blue) format from 
different pavement sections were analyzed in this study. Each pavement section has 16.1 meters 
of length by 4.0 meters of width, and an area equivalent to 64.4 square meters (a total of 386.4 
square meters of pavement). Based on the pavement section size, each pixel represents a 1.96 
x 1.96 millimeters of pavement surface dimension. These parameters are consistent with the 
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standards established by different transportation departments in the United States (Dalla Rosa 
et	al., 2016; Pierce and Weitzel, 2019). For this study, each high-resolution image was split into 
256 new images with 256 x 256 pixels level resolution, wherein each new image covers a 0.5 x 
0.5 meters pavement area. The splitting procedure resulted in 1536 new small images, and ex-
panded the number of images used as input in the training, validation, and performance test of 

CNN.  

 The input 256 x 256 pixels images size used in this study is similar to other CNN architectures 
proposed in the literature, such as VGG (Visual Geometry Group), GoogleNet Inception, Res-
Net50, which have applied a 224 x 224 pixels input images. Besides, the rate between the orig-
inal and split images allowed each section to be fully evaluated. Although some images do not 
indicate visible cracks, all the 1536 input images were used in the CNN calibration, validation 
and testing as discussed in item 2.2. Figure 2 shows an example of the pavement surface rec-
orded from a section with a typical crack pattern, while Figure 3 represents the mosaic of small 
images obtained from the split procedure of the original image, which is discussed in item 2.2 

as well. 
 

 
Figure 2. A full-scale image sample measuring 16.1 x 4.0 meters (width x height) 

 

 
Figure 3. An image mosaic (Figure 2), with 256 x 256 pixels sized or equivalent to 0.5 x 0.5 meters and represented 

            in Figure 5 

2.2. Convolu?onal neural network (CNN) descrip?on 

A neural network has its structure de ined by input and output layers, in addition to the inter-
mediate hidden layers. Each layer is made of neurons (nodes) that process the data. The neu-
rons in each consecutive layer are connected by weights. To transform a traditional feed-for-
ward neural network into a convolutional neural network, which is used in image related works, 
a feature extractor formed by convolutional layers is added. These layers are represented as 
volumes. This way, the architecture of a CNN is given by convolutional layers followed by dense 
layers (fully-connected layers) for the classi ication task, just like a simple feed-forward neural 

network 
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 A colored image, with RGB color channels, can be de ined as a volume with dimensions given 
by its height x width x number of color channels. As an example, an image with resolution 256 
x 256 pixels and RGB color channels has a volume of 256 x 256 x 3, while a monochromatic 

image of the same resolution has volume 256 x 256 x 1. 

 A convolutional layer operates through  ilters, also called kernels (Figure 1). Each  ilter must 
have the same number of channels that it receives as input. It also has a receptive  ield of a 
predetermined size, in this case, 3 x 3 (width x height), as shown in Figure 4. It is important to 
say that each pixel corresponds to 1.96 mm x 1.96 mm and the input image size proposed in the 
present work corresponds to an approximate area of 0.25 m² (0.5 m x 0.5 m). The CNN archi-
tecture proposed in the present work is simpler compared to other architectures as exempli ied 

by (Khan et	al., 2018), due to the more simplistic features observed on pavement surfaces.  

 

 
Figure 4. Convolutional Neural Network Used in this study. 

 

 Each one of the six images with resolution 2048 x 8192 pixels was divided into 256 images 
with resolution 256 x 256 pixels as demonstrated in Figure 5. The new group of 1536 images 
with resolution 256 x 256 pixels was further divided into three subgroups for training, valida-
tion, and testing phases. Thus, 1076 (70%) were used during the training process, 230 (15%) 
were used for validation, and 230 (15%) were used to test the CNN. This split is similar to the 
ones presented on different previous works that used neural networks (Pianucci et	al., 2019; 
Silva e Lucena, 2018), where the image set was split into 80% for training and validation, and 
20% for testing. Also, because the pavement surface has a very dark color, all RGB images were 
converted to an 8-bit scale, resulting in 256 [0 - 255] possible grayscale values, where the bit 0 

corresponds to the color black and 255 corresponds to the color white. 

 

 
Figure 5: The input dataset samples obtained from the original image and after the split process (Figure 3). 

  

 The CNN built for the present work was implemented using the PyTorch library (Paszke et 
al., 2019), open-source framework for Deep Learning that allows model training with the use of 
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GPU (Graphics Processing Unit), which makes the training faster due to the parallel execution 
of processes. PyTorch was released in early 2017 by the Facebook AI Research lab and is already 
used by other companies. In this work, PyTorch (torch version 1.0.1 and torchvision version 
0.2.2) was used to build, train, and evaluate the classi ication model, utilizing the version 3.6.1 
of Python programming language. All the analyses with the CNN were done on a computer with 
AMD FX(TM)-6300 Six-Core processor, 12 GB of RAM, and one NVIDIA® GeForce GTX 1050 Ti 

GPU with 4 GB of memory along with the version 9.2 of the CUDA® library. 

2.3. CNN architectures and training 

Before the training phase, three pre-processing procedures were applied to the analyzed im-
ages. In Model A, the Data Augmentations process was used, which aims to virtually increase 
the number of distinct images to feed the model. This virtual increase in the number of images 
decreases the chances that the model memorizes the training data and, therefore, increases its 
generalization capacity. During feeding an image to the model, it can be  lipped horizontally and 
vertically with a 50% probability. As a result, at each iteration, the model will receive as input a 

slightly modi ied version of the same image. 

 Besides the Data Augmentation step (Figure 6a), two  ilters known as binarization (Figure 
6b) and dilation (Figure 6c) were applied to Model B. In the binarization process, the pixel val-
ues less than or equal to 40 were set to 255 (white) and pixel values greater than 40 were set 
to 0 (black). This step was done with the use of the OpenCV library (Bradski, 2000), that is avail-

able for Python as well as other languages like C++ and MATLAB. 

 The learning CNN process for both models A and B was carried out through batches of 16 
images. After concluding each epoch, the network performed the updating of its parameters 
( ilters, weights, and biases) to reduce the loss during the machine learning. The loss was cal-
culated by the cross entropy H (Eq. 1), also known as “softmax loss” function, which represents 
the measure of the distance between the probability of output obtained pi (forecast) and the 
probability of expected output yi. This function allows evaluating how far the neural network is 

from the expected result. 
 

 
(a) (b) (c) 

Figure 6: Additional used filters in this study associated with model B: a) Original image; b) Binarization; c) Dilatation. 
 

 In Eq. 1, the forecast pi	(Eq. 2) is determined by a sigmoid or logistic activation function and 
classi ied between 0 and 1, which is connected to the last layer of the network. This logistic 
function is commonly applied to binary classi ication in CNN architecture, wherein the xi	repre-
sents the output response of the last network layer of i image, while wT is the weight assigned 
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to this speci ic last layer. The weight is calibrated according to the batch of input images inserted 
into the network. This calibration process is commonly performed by descending gradient al-

gorithms as exempli ied in the literature (e.g. Khan et	al., 2018). 

H�p, y� =  − 1
n � y ln�p�

�

��
+ �1 − y� ln�1 − p�                � ∈  �1, ��

  

�� = 1
1 + ����.� 

  

2.4. Evalua?on metrics 

The quality of the semi or fully automated image acquisition system can be veri ied by a classi-
 ication statistic based on a binary confusion matrix (True/False, Positive/Negative, 1/0), with 
size 2 x 2, normally applied on healthcare diagnosis. This 2 x 2 matrix is made of the number of 
True Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN), given 
by the classi ications made by the CNN. These binary quantitative results can be used as an ad-
ditional evaluation method for the quality of a classi ier and image acquisition (Dalla Rosa et	al., 
2016). Besides, previous works (Dung e Anh, 2019; Osman et	al., 2019) have proposed the use 
of these metrics to measure the accuracy (Eq. 3), precision (Eq. 4), recall (Eq. 5) and F1-Score 

(Eq. 6) of a classi ication model. 

 
                                                                        !""#$%"& = '()'*

'()'*)+(�+*                                                 (3) 

  
                                                                              ,$�"-.-/� =  '(

'()+( (4) 

  
                                                                                         0�"%11 = '(
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                                                                              23 ."/$� =  4×(678�9�:;×<78=>>
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 The accuracy takes into consideration the number of correct predictions in proportion to the 
number of total examples, indicating how often the classi ier is correct in its prediction. How-
ever, the analysis solely of this parameter does not convey detailed information considering the 
case of a CNN applied to image classi ication. Precision represents the number of correct pre-
dictions in proportion to the total number of predictions made by CNN for that class. This metric 
is often used in a situation where an FP presents more harm than FN classi ication. The recall is 
given by the frequency at which the classi ier detects examples of a given class. In the context 
of this work, recall is then de ined as the ratio between the number of correct predictions of a 
crack in a pavement surface and the total number of examples containing a crack. A recall anal-
ysis is useful to determine how big is the number of False Negatives, therefore widely used in 
situations where an FN can cause more harm in a classi ication task. The F1-Score is de ined as 
the harmonic average between precision and recall, measuring the performance of a model.  
High values of F1-Score indicate low FP and FN counts, meaning the classi ier is doing a good job 

at its task. 

(1) 

(2) 
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3. RESULTS AND DISCUSSION 

3.1. Training and valida?on performance test 

To evaluate the CNN performance during training, validation, and test images sets, one hundred 
epochs were set up. The epoch number represents how many times an image batch passes 
through the neural network. As observed in Fig. 7a, there is a clear trend to Model A to achieve 
a lower cross-entropy loss during training faster than the validation procedure. This evidence 
indicates that the initial model architecture “memorizes” the input dataset during training 
phase, which has resulted in the CNN failure to generalize the used images in the validation 

analysis. This behavior was observed for both proposed models in this research. 
 

 
                         (a)          (b) 

Figure 7. The Model A performance evaluation: a) cross-entropy loss; b) accuracy. 
 

 Another  inding that supports the conclusion that image memorization by CNN has occurred 
is related to the maximum accuracy, as observed in Fig. 7b.  The highest detected accuracy dur-
ing the validation procedure was 20% less than identi ied during training, which emphasizes 
this issue. The neural network memorization is discussed in the literature (e.g. Arpit et al., 2017; 
Haykin, 2009). Certain speci ic characteristics (even noise) present in the dataset may reduce 
the network’s ability to generalize the relationship between input and output and result in a 
data over adjustment or over itting. The over adjustment can be de ined by the error decrease 

during the training, while the test group error remains elevated. 

 Furthermore, the generalization issue could be in luenced by the size and how representa-
tive is the training dataset, as well as the neural network architecture complexity. The complex-
ity is de ined in this study as the number of layers that the CNN was con igured. Based on this 
evidence, the initially proposed architecture was reviewed to make it compatible with the num-

ber of CNN layers and the size of the dataset. 

 To avoid possible memorization during the neural network training, an additional image 
transformation was added in both models in the Data Augmentation step, which is named in 
this study as “Modi ied Architecture” and represented in Figure 4. To perform this new step, a 
random image rotation action was introduced before the mirroring procedure in the CNN  
architecture. The image random rotation adopted in this study ranges from -20 to +20 degrees 

as exempli ied in Figure 8. 
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Figure 8. An image sample after the random rotation due to the new Data Augmentation procedure 

 

 Also, the number of  ilters in the Modi ied Architecture was reduced from 32 and 16, respec-
tively for the  irst and second convolutional layers, to 8 eight  ilters each one. Additionally, the 
number of connection nodes between the dense layer with the layer immediately before the 
output layer was resized from 256 to 16. These improvements allowed to decrease the model’s 
complexity and the computational memory demand, which was reduced from 393 to 6.1 Mega-
bytes (about 98% lower) during the training. Also, the necessary inference time for each image 

during the validation analysis dropped from 104 to 30 milliseconds. 

 Additionally, to prevent the over itting issue during the training procedure, the dropout was 
increased by 50% in the dense layers. The dropout indicates that some neurons (nodes) of the 
neural network can be ignored during the training, which reduces the CNN ability to learn the 
problem. To anticipate slower learning due to reduced model complexity, it was necessary to 

raise the number of epochs from 100 to 2000. 

 These implemented procedures to reduce both model’s complexities have allowed improv-
ing the CNN performance compared to the  irst architecture, due to a more consistent validation 
loss during the neural network training. Particularity, the new model A architecture achieved a 
minimum cross-entropy loss in lower validation (45%) compared to the  irst algorithm (82%). 
This evidence may indicate that, during the training procedure, there was a good generalization 
acquired for CNN, as well as the information learned by the neural network from the training 

dataset has been more ef iciently applied in the validation step.  

3.2. Evalua?on metrics  

To evaluate the CNN performance of the trained models A and B architectures, the test dataset 
was applied. The metrics for both models are summarized in Table 1. The epoch 30 was de ined 
to assess the metrics for Model A (Figure 5) before the algorithm’s improvement, which corre-
sponds to the lowest cross-entropy loss during the validation procedure. Also, only the classi-
 ied images with a probability higher than 70% were considered as cracked pavement.  
To compare the performance of the developed models with models developed in previous stud-
ies, the metrics observed by other studies are also presented in Table 1 (Fan et al., 2018; Osman 

et al., 2019; Zhang et al., 2016). 

 The classi ication results obtained from CNN with the test dataset indicates that Model A 
achieved an accuracy greater than 76% using the initially proposed architecture. However, after 
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the suggested improvements, the modi ied Model A algorithm reaches a performance of nearly 
84%, which corresponds to 193 (TP=100; TN=93) images that were correctly classi ied. Alt-
hough this behavior was also observed in Model B, a fewer expressive performance gain com-
pared to Model A was identi ied. This evidence indicates that both image binarization and dila-

tation procedures do not contribute to CNN overall performance. 
 

Table 1 – Metrics evaluation for different the CNN models proposed in this study 

Performance 

Evaluated models Previous studies 

A  A  

(Modified) 

B  B  

(Modified) 

Zhang  

et al. (2016) 

Fan  

et al. (2018) 

Osman  

et al. (2019) 

False Positives (FP) 38 21 33 23 - - - 

False Negatives (FN) 17 16 16 23 - - - 

True Positives (TP) 99 100 100 93 - - - 

True Negatives (TN) 76 93 81 91 - - - 

Accuracy 76,1% 83,9% 78,7% 80% - 98,5% 99% 

Precision 72,3% 82,6% 75,2% 80,2% 86,9% 91,8% 99,1% 

Recall 85,3% 86,2% 86,2% 80,2% 92,5% 88,1% 98,1% 

F1 Score 78,3% 84,4% 80,3% 80,2% 89,6% 89,9% 98,6% 

 

 

 
Figure 9: Examples of incorrect classifications observed during the CNN analysis. 

 

 Figure 9 shows typical situations of different images that were incorrectly classi ied by the 
CNN, resulting in FP or FN. In this study, the higher number of FP than FN for both architectures 
are noticed in Table 1. The implementation of additional Data Augmentation step in the modi-
 ied architectures was able to reduce the number of FP by 55% for Model A, and approximately 
70% for Model B. Nevertheless, the number of FN remained unchanged for Model A, while 
Model B showed an increase of images without cracks that were incorrectly classi ied. This par-
ticular situation resulted in relatively lower precision than the recall parameter, which indicates 
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that both models tend to bene it the Positive class. Also, this outcome shows that the CNN con-
siders the largest number of cracks more important, even though this process results in FN as 

well. 

 Another important evidence about the model’s overall performance was established by the 
F1 score (Table 1). The algorithms adjustments carried out in both models only promote an im-
provement in Model A, leading to the best result (F1=84.4%) as well as de ine the chosen CNN 
architecture. Also, the best F1	score observed in this study is relatively close to values obtained 
by previous studies published in the literature (Fan et al., 2018; Osman et al., 2019; Zhang et al., 
2016). While the CNN implemented here using the PyTorch library have shown a great potential 
for automated asphalt pavement crack detection systems, a more robust group of images avail-

able on the training procedure could help to improve the overall performance. 

4. CONCLUSION 

This study presents the potential of Convolutional Neural Networks (CNN) as an automated tool 
for crack detection in asphalt pavements. Six high-resolution images were split into 1536 im-
ages with 256 x 256 pixels resolution, which were used for training, validating, and testing the 
developed architectures. The results show that the proposed CNN algorithms have a satisfac-
tory performance in detecting surface cracks in asphalt pavement images. Speci ic remarks and 

recommendations are discussed below. 

 The dimension of input images used in CNN was adequate for the training, validation, and 
testing steps. Although the images with dimensions lower than 256 x 256 pixels will allow for 
reducing the necessary processing time, they would not be able to improve the ability of CNN 
generalization because essential features, such as edges detection, could be missed. On the 
other hand, larger image sizes can result in high computational cost, which may be unsuitable 

for application in fully automated pavement defects detection systems. 

 Even though CNN shows a high ability to learn the image features patterns, which resulted in 
a good model generalization, possible issues encountered by the network could have affected 
its overall performance. Usually, surface texture, traf ic marking or the presence of liquid sub-
stances (spots) on the pavement surface, as well as the weather conditions can directly affect 
the asphalt pavement distress classi ication. Also, other defects such as potholes may result in 
a larger number of FP. This evidence indicates that CNN gives high importance to the edges and 

color contrast over the pavement surface. 

 CNN’s skill to identify other types of cracks, particularly those caused by fatigue mechanism, 
is still considered limited due to the image pattern used in this study. Usually, pavements that 
experience the fatigue mechanism show an irregular and random crack distribution, which is 
different from the pattern used for CNN training. Feeding the proposed CNN with larger and 
more diverse images dataset, with distinct types of cracks, will improve the generalization net-
work ability. Future studies could use a larger image dataset and consider different crack types 
and severity levels. Such future work could improve the network’s ability to classify different 

cracking patterns, including earlier stage cracks where the opening is still relatively small. 

 Despite the collection of images by automated systems covers a relatively small area, the 
overlap of each pixel on the pavement surface should be considered the main aspect to be eval-
uated. The resolution of the images used in this study, which corresponds to a squared area with 
1.96 mm x 1.96 mm, was appropriate for the CNN classi ication procedure. However, public and 
private transportation agencies need to de ine the minimum camera requirements to maximize 
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the ef iciency of the algorithms. Therefore, new protocols that establish the minimum require-

ments for pavement surveys using automated systems are essential. 

 A high number of  ilters (layers) may increase the probability that the CNN memorizes the 
image’s features during the training step. The memorization issue can result in a performance 
loss during the network validation and testing. This evidence is supported by the evaluated 
metrics, which indicated a clear drop in the number of images that were incorrectly classi ied 
by the modi ied architecture. The adoption of a simpli ied network may improve the ability to 
identify the defects observed in different images and a considerable computational cost reduc-

tion during the CNN classi ication.  

 Currently, code libraries, such as the one used in this study, have allowed CNN to use the 
parallel processing power, available on modern graphics cards (GPUs), in which the number of 
processing units is higher at a relatively low cost. According to the manufacture speci ications, 
the entry-level GPU used in this study has 768 processing units (Stream Processors), which is 
considerably higher than what is available in the current Central Processing Unit (CPU). By par-
alleling the hardware, the algorithm could be improved to consider both the type and severity 
levels of pavement defects, a substantial improvement to the input data quality for Pavement 
Management Systems (PMSs). Also, the quali ied automated pavement inspection system will 
contribute to a more ef icient prediction of pavement performance at the network-level. Future 

work could investigate the impact on the results of the analyses performed within PMSs. 
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