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 ABSTRACT  

Traffic simulators can be used to perform safe, low cost scenario evalua�on. However, 

their mathema�cal models are calibrated to scenarios commonly found in the simula-

tors’ country of origin. VISSIM truck accelera�on func�ons were created for trucks with 

be:er power/mass ra�os than typical Brazilian trucks. This paper presents the calibra-

�on of VISSIM truck accelera�on func�ons using the difference between real and simu-

lated speed profiles as goodness-of-fit measures. Using GPS, speed profiles were ob-

tained for 57 trucks travelling over a segment of 18 km, four-lane freeway situated on 

rolling terrain, under low traffic flow. The calibra�on procedure was automated and 

based on a gene�c algorithm. Several calibra�on runs were performed using different 

numbers of genera�ons and popula�on size. The resul�ng accelera�on func�ons are 

presented and discussed. 

 

RESUMO   

Simuladores de tráfego permitem avaliar cenários de maneira segura e com baixo custo. 

Todavia, os modelos matemá�cos que os regem são ajustados para cenários frequentes 

no país de origem do simulador. No VISSIM, os modelos referentes ao deslocamento de 

caminhões simulam veículos com melhor desempenho, se comparados aos caminhões 

brasileiros. Este trabalho apresenta a calibração das funções de aceleração para cami-

nhões do VISSIM, u�lizando a diferença entre perfis de velocidade simulados e reais 

como medidas de ajuste. Usando GPS, foram ob�dos perfis individuais para 57 cami-

nhões que trafegaram por cerca de 18 km ao longo de uma rodovia de pista dupla em 

relevo ondulado, sob baixo fluxo de tráfego. A calibração foi automa�zada por meio de 

um algoritmo gené�co. Diversas execuções do algoritmo foram realizadas, variando nú-

mero de gerações e tamanho populacional. As funções de aceleração ob�das são apre-

sentadas e discu�das. 
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1. INTRODUCTION 

Computional simulation models are used in different areas of science because they can predict, 
reproduce and assess real and hypothetical scenarios. In traf�ic studies, widespread use of these 
tools can be explained by the low cost, the fact that they are risk-free and the speed in which 
data are obtained (Park and Qi, 2005). By combining different mathematical models, simulators 
are able to reproduce real phenomena of great complexity. This ability leads to the study and 
evaluation of the theories behind these phenomena by comparing them with simulated scenar-
ios (Heermann, 1990). 



Carvalho, L.G.S.; Setti, J.R. Volume 27 | Número 3 | 2019  

TRANSPORTES | ISSN: 2237-1346 132 

 Simulators present one or more default setting sets for each of their mathematical models. 
Each set is made in such a way that the reproduction of speci�ic traf�ic scenarios – usually con-
sistent with the �leet and the drivers of the simulator’s country of origin – reproduces the real 
traf�ic �low with a satisfactory degree of �idelity. However, the vehicles’ characteristics and be-
havior can vary not only from one country to another, but also between regions within the same 
country. Therefore, simulators should be calibrated according to the conditions of the place of 
study in order to ensure the reliability of the simulated data (Hourdakis et	al., 2003). 

 In Brazil, most efforts made to calibrate simulators focus on models that govern interactions 
among vehicles (Egami et	al., 2004; Medeiros et	al., 2013; Bethonico et	al., 2016), and there are 
few studies actually addressing vehicle performance calibration (Cunha et	al., 2009). Therefore, 
the aim of this paper is to calibrate the VISSIM vehicle performance model for Brazilian trucks. 
To do this, a real freeway segment of rolling terrain, approximately 18 km long, was used. The 
calibration was carried out by comparing the speed pro�iles of real and simulated trucks trav-
elling along the segment under study, where the real instantaneous speeds were obtained from 
GPS data processing. The calibration was automated using a genetic algorithm as this technique 
is widely cited in the literature concerning traf�ic simulator calibration (Kim & Rilett, 2001; Ma 
& Abulhai, 2002; Egami et	al., 2004; Cunha et	al., 2009; Medeiros et	al., 2013; Chiappone et	al., 
2016). 

2. TRAFFIC SIMULATORS AND THE NEED TO CALIBRATE THEM 

Computational simulators are often cited in the literature and have appeared as both objects 
and tools for studies in different areas of science for over 50 years (Shumate and Dirksen, 1965). 
Despite the long history of studies on traf�ic simulators, the need to calibrate them has become 
a recurrent topic only since the late 1990s. The 30-year time lag of this topic in relation to the 
beginning of when these tools were used in the transport sector can be explained by the way 
these programs were developed. The �irst traf�ic simulators were created and validated to sim-
ulate one or a few speci�ic scenarios, whereas their successors were designed to reproduce in-
creasingly broader conditions (Kotusevski and Hawick, 2009). As current simulators are cre-
ated and validated to simulate generic networks, calibration has become necessary to better 
represent behaviors observed in local scenarios (Jayakrishnan et	al., 2001; Hourdakis et	al., 
2003). 

 Among the various attempts to calibrate simulator models, the most frequent ones are the 
car-following and lane-change models (Chu et	al., 2003). However, the large number of variables 
and the high computational costs required for calibration mean that, generally, models are not 
calibrated regularly. Therefore, the frequent use of simulators occurs only by adjusting the 
origin-destination matrices and changing a few behavioral variables based on the user’s expe-
rience (Balakrishna et	al., 2007).  

 In traf�ic microsimulators, the models involved recreate the traf�ic �low by generating vehi-
cles with individual behaviors. Thus, using aggregate traf�ic measurements to calibrate these 
models is not appropriate since aggregate measurements are affected by the combination of 
several models simultaneously (Toledo et	al., 2004). On the other hand, disaggregate data is 
dif�icult to collect and costly (Balakrishna et	al., 2007), making it complex to calibrate simula-
tors. Despite this dif�iculty, Li et	al. (2015) carried out the calibration of the VISSIM desired ac-
celeration function for passenger cars using GPS data obtained for individual vehicles travelling 
on urban roads. Hence, it is expected that this approach can be applied for freeway segments.  
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 In order to calibrate vehicle performance models, common procedures include simulating 
segments comprising a long ramp preceeded by a �lat section in which the truck’s speed stabi-
lizes (Cunha et	al., 2009). Although this approach makes it possible to compare the equilibrium 
speed, such a combination of ramps rarely occurs since the rolling terrain, characterized by the 
constant alternation between up grades and down grades, is the most common scenario.  

 In this research, these shortcomings were avoided by collecting data in a more realistic way, 
using a GPS device installed on a sample of trucks that travelled along a divided multilane high-
way during periods of low traf�ic �low. With the set of instantaneous speed pro�iles thus ob-
tained, the truck performance model used by VISSIM was recalibrated using a genetic algorithm. 

3. VISSIM TRUCK PERFORMANCE MODEL  

In VISSIM, vehicles can change speed through acceleration functions, which in turn are created 
for each vehicle based on their category from pre-con�igured functions, as shown in Figure 1. 
These functions represent a region of possible acceleration values in relation to the vehicle’s 
instantaneous speed. For heavy vehicles, these regions are delimited by acceleration functions 
that correspond to the limits for the power/mass ratio. For the VISSIM default setting, the upper 
and lower limits are 7 and 30 kW/t, respectively (PTV, 2016). 
 

  
Figure 1. Default maximum acceleration and desired acceleration functions for heavy vehicles in VISSIM 9 [Adapted 

from PTV (2016)]. 

 

In order to de�ine the acceleration versus the available speed values for a simulated truck, 
VISSIM calculates the power/mass ratio of that vehicle the moment it is generated. The obtained 
value is then compared with the upper and lower limits of the power/mass ratio set for the 
simulation. If the truck’s power/mass ratio is not within the limits, the calculated value is re-
placed by the nearest limit; for example, in the setting shown in Figure 1, the power/mass ratio 
of a truck with 4 kW/t will be rounded up to 7 kW/t as that is the limit closest to the calculated 
value. In this case, the vehicle’s maximum acceleration and desired acceleration values will be 
equal to the respective limit-curves for its new power/mass value. 

 If the truck’s power/mass is within the limits, its acceleration values will be obtained by lin-
ear interpolation between the limit-curves, using the truck’s power/mass as a measure of dis-
tance for interpolation. In Figure 1, the "median" curves correspond to the interpolated accel-
erations for a truck with 18.5 kW/t, whereas the limit-curves are the accelerations used by 
trucks outside the stipulated power/mass range. 
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 Apart from the differences in mass and power among trucks, VISSIM also varies the possible 
acceleration based on the slope of the ramps.  Whenever a vehicle is travelling on steep grades, 
its maximum acceleration curve is displaced vertically, changing each point through the relation 
av,G = (av – 0.1G), where av is the acceleration (in m/s²) at speed v on a �lat stretch; and av,G is the 
acceleration (in m/s²) at speed v in an ascending grade of magnitude G (in m/100 m). 

 Another important aspect of this simulator is that all the vehicles receive a desired speed 
value when they are created. The desired speed determines the highest speed the vehicle will 
reach, even when the interpolated acceleration curves allow it to reach higher speeds. 

4. THE APPROACH USED 

The VISSIM default setting provides only one category for trucks. However, the Brazilian �leet is 
heterogeneous, and each vehicle can present quite varied combinations of characteristics 
(power, mass, number of axles, age, maintenance conditions, and so on). Therefore, calibrating 
acceleration functions for more than one category of trucks is a way of obtaining more appro-
priate results for subgroups that share common characteristics. This work follows the classi�i-
cation of Brazilian trucks as proposed by Cunha et	al. (2008), dividing them into four types: light 
(2 axles); medium (3 axles); heavy (4 and 5 axles) and extra-heavy trucks (6 or more axles). 

 As the acceleration functions govern the independent displacement of the vehicles, i.e. as if 
they did not suffer interaction from traf�ic, in order to calibrate the simulator, real data from 
trucks travelling under these conditions need to be obtained. Carvalho and Setti (2017) present 
a method for collecting, treating and obtaining speed pro�iles of individual vehicles, which can 
be used as a measure for adjusting the functions. 

 However, VISSIM is a stochastic simulator, in which the mass, power and desired speed 
(MPdS) values of each vehicle are random variables, generated from cumulative frequency dis-
tributions for that truck’s class. Consequently, cross-checking the real and simulated speed pro-
�iles under these conditions would not produce a satisfactory calibration, as the MPdS proper-
ties of the trucks being compared would be different from each other.  Thus, a non-stochastic 
con�iguration of the simulator needs to be obtained for the calibration. 

 By default, VISSIM vehicle types correspond to vehicle categories (for ex.: Type 1 – passenger 
cars, Type 2 – trucks). At the beginning of a simulation run, three cumulative frequency distri-
butions (one for each MPdS characteristic) and one set of acceleration functions are assigned to 
each vehicle type. 

 In order to make it possible to compare real and simulated vehicles with equal MPdS values, 
the concept of VISSIM vehicle types was modi�ied, making each type correspond to an observed 
truck, i.e. with known and constant MPdS values. Trucks from the same category use the same 
set of acceleration functions, allowing these functions to be calibrated simulating all trucks that 
belong to this category.  

 Therefore, the MPdS distributions still need to be con�igured for each truck so that they use 
�ixed values, preventing the generation of random vehicles. The distributions were con�igured 
as two pairs of values: Y (0%), for the cumulative frequency 0%; and Y (100%), for the cumula-
tive frequency of 100%. As VISSIM does not allow Y (0%) = Y (100%), it was assumed that Y 
(0%) = Y (100%) − 0.001, so that the MPdS property value is constant, regardless of the value 
selected by the distribution. 
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5. PROPOSED METHOD  

Brie�ly, the calibration was obtained using a genetic algorithm whereby each individual is a pos-
sible combination of values for the limit-curves that comprise the maximum and desired accel-
eration functions. The presentation of the method begins by addressing two important aspects 
of the genetic algorithm: the real data and the �itness function, calculated at the end of the eval-
uation function. Afterwards, the procedure to create the four networks (one for each truck cat-
egory) in the simulator is described. Then, the implementation of the genetic algorithm is dis-
cussed. Finally, the validation of the acceleration functions is addressed.  

5.1. Input data 

Speed pro�iles are used to assess the acceleration function �itness. The sample consisted of 57 
trucks travelling on a divided, multilane highway, with a posted speed limit of 90 km/h for 
trucks. The road segment chosen for the data collection is located in rolling terrain and its ver-
tical alignment consists of a sucession of crest and sag vertical curves connected by grades of 
varied lengths and magnitudes. The horizontal alignment of this road segment is straight, with-
out any horizontal curves.   

 Truck drivers were approached at a mobile weigh station and, upon their agreement in par-
ticipating in the data collection, a researcher would board the truck and install the GPS unit and 
antenna. The drivers were asked to drive as they usually would do in that segment. The GPS unit 
recorded the vehicle location at 1-second intervals. The data collection was conducted during 
periods when the traf�ic �low was low, to prevent speed reductions due to the traf�ic. Truck mass 
was obtained from the weigh station scale; the engine power and number of axles were ob-
tained from a short interview with the driver. Figure 2 shows the power/mass ratio for the 
trucks in the sample, according to their category. The grey area in the graph shows the upper 
and lower limits of VISSIM’s default power/mass ratio. 

 

 
Figure 2. Power/mass ratio for trucks in the sample. The grey area shows VISSIM’s default range for power/mass ratios 

(7–30 kW/t). 

 

 The method used for constructing the speed pro�iles was adapted from Carvalho and Setti 
(2017), using code written in Python 3.6. Two different speed pro�iles were derived for each 
truck. The �irst one characterizes the initial phase of the movement, when the truck is starting 
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from a complete stop and accelerates to reach the desired speed. It was assumed that this initial 
phase comprised the �irst 1.5 km travelled. It describes the instantaneous speed of the vehicle 
at predetermined points.  

 The second pro�ile represents the movement of the truck after it reached its desired speed 
and accelerates or decelerates because of the effect of grades on its path. This speed pro�ile was 
built using the GPS data collected over the 16.5 km segment after the initial 1.5 km section and 
consists of the instantaneous speeds at 100-m stations along the segment.  

 Figure 3 shows the speed pro�ile for one of the trucks in the sample. The speeds from �iltered 
data at each station were adopted as the real speeds in the calibration of the truck performance 
model.  

 

 
Figure 3. Speed profile representing the observed speeds during the initial acceleration and cruise phases for one of the 

trucks used for the data collection (Truck 53). 

 

The desired speed for each truck was de�ined as the 90th percentile of the cruise speed of the 
respective vehicle. This threshold was adopted after identifying that, despite the observed 
trucks being able to reach high speeds, they were unable to maintain these high speeds for long 
distances. Speeds near the 90th percentile, however, were more easily sustained by most trucks 
and thus considered more representative of the truck’s desired speed.  

5.2. Crea;ng simula;on networks 

The simulation network was created using the path of a randomly chosen truck as the reference 
for the horizontal and vertical alignments of the highway. This highway segment was repro-
duced in the simulation by one 18-km link with one single traf�ic lane. To optimize the simula-
tion runs, the network used comprised two identical 18-km links, one that was used to analyze 
the initial acceleration phase of the trip and the other for the cruise phase of the trip. To collect 
the data to characterize the performance of the simulated trucks, dual-loops detectors  
measured the speed of the truck at predetermined points along the network links. In the link 
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representing the initial acceleration phase, the detectors were placed at variable distances; in 
the link used to simulate the cruise phase of the trip, the detectors were placed at 100-m sta-
tions. Figure 4 illustrates the network used for the simulation. 

 

 
Figure 4. Schematic diagram of start and cruise default links. 

 

 The simulations used a �low of 60 veh/h during the �irst minute of the simulation, followed 
by no additional input �lows, ensuring that only one truck per link were simulated, with a total 
absence of traf�ic interaction. 

 In VISSIM, vehicles whose power/mass ratio is not within the prede�ined limits (7 to 30 
kW/t) receive an acceleration curve that is equal to the nearest limit. As can be observed in 
Figure 2, a signi�icant part of the power/mass values of the sample are not within VISSIM stand-
ard limits. In order to prevent the simulator from disregarding the difference of the vehicles’ 
performance not included in this range, the decision was to change the power/mass ratio limits 
to 2.3 and 23.2 kW/t. 

 Finally, the simulation time was set to 40 minutes, which is approximately double what is 
required for the real trucks to complete the route along the segment. 

5.3. Fitness func;on  

The �itness function, i.e. the function that returns the quality measure of the calibrated acceler-
ation functions was a combination of two error measures, calculated for the two speed pro�iles 
(the initial acceleration phase and the cruise phase).   

 The �irst error measure uses the average error between real (observed) and simulated 
speeds in order to obtain an average error close to zero. This measure is represented by: 

� = 1��� 1��	
 ���
���
 − �
���
���


��� � ,�


��  

where µ: the mean average of the simple errors for the speed of each truck; 

   c:	 the index that represents the trucks belonging to the category (light,  
                                medium, heavy or extra-heavy); 

	 	 								N: the total number of trucks for that category; 

            i: 	the index that represents the station along the way; 

(1) 



Carvalho, L.G.S.; Setti, J.R. Volume 27 | Número 3 | 2019  

TRANSPORTES | ISSN: 2237-1346 138 

     M(c):	 	the number of stations through which the c-th vehicle travelled; 

	 	 		�
���
:  the simulated speed of the c-th truck at the i-th station along the segment; and 

      �
���
: 	the observed speed of the c-th truck at the i-th station along the segment. 

 The second measure uses square errors to penalize the larger differences between real and 
simulated speeds at each station: 

� = �1��� 1��	
 ���
���
 − �
���
����


��� ��


�� , 
where ε is the square root of the mean average of the squared errors in the speed observation 
of each truck and all the other parameters were de�ined in Eq. 1. 

 Finally, the �itness function, which measures the quality of the calibration, is calculated 
through the function: � = �� + �
 + !�� + �
4  

where F is the �itness for an individual (i.e. a given set of calibration parameters from the per-
formance model) in the population which comprises the current generation; a and c	indicate 
the acceleration and cruise segments, respectively, for which the measurements µ and ε are cal-
culated; and p is the penalty factor for measurement ε in the accelerating segment (where the 
initial acceleration occurs). The p value was empirically �ixed at 0.2 because it was detected that 
this measurement could represent about 80% of the �itness, which would virtually eliminate 
the contribution of the other measures in the total value of F, hindering the calibration of the 
acceleration functions. 

5.4. Implemen;ng the Gene;c Algorithm 

A genetic algorithm is a search heuristic based on the process of natural selection.  The genetic 
algorithm used to search for the best values for the acceleration functions was coded in Python 
v. 3.6 using the Spyder v. 3.2.6 development environment. Figure 5 shows a �lowchart of the 
general structure of the genetic algorithm (GA) used. 

 

 
Figure 5. General flowchart of the genetic algorithm used to recalibrate the truck performance model. 

(2) 

(3) 
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 The program contains three modules. The control module contains the routines to control 
the search and call the other two modules when needed. The second module is used to apply 
the genetic operators (selection, crossover, mutation and predation) used to create new indi-
viduals from the current population. The third module is used to calculate the �itness function 
value of an individual, a process that requires running VISSIM with new values for the maximum 
and desired acceleration functions to produce a simulated speed pro�ile. 

 Selection of individuals for crossover assumes that all individuals in the previous generation 
are able to reproduce; best �itted individuals, however, have a greater chance to be selected, as 
the selection is based on the individual’s �itness value. Routines for crossover, mutation and 
creating new individuals include a series of constraints, because VISSIM requires the accelera-
tion functions to have the characteristic format shown in Figure 1. Those constraints also pre-
vent the GA from creating acceleration values that would represent unrealistic operating con-
ditions for the trucks.  The best individual in each generation is always preserved, so the �itness 
value of the best individual in every generation is either maintained or improved and never 
worsens.  

 The creation and modi�ication of individuals considered only the upper and lower limits of 
the acceleration functions. This decision reduced the constraints on the application of genetic 
operators when creating a new generation and increased the genetic variability of the popula-
tions. When needed, the median function is obtained from the average between the lower and 
upper acceleration limits for a given speed. 

 In each generation, 30% of the population (excepting the best individual) were randomly 
selected for mutation. Once an individual is selected for mutation, each of its genes had a 20% 
chance of being mutated. Mutation was carried out by attempting to add a random number be-
tween ±0.2 m/s² to the gene selected for mutation. If the new value was not valid, a new random 
value was selected, and the new sum was veri�ied. The procedure is repeated up to �ive times 
and if none of the attempts resulted in a valid new gene, the original gene value was kept.  

 Predation was applied at every generation corresponding to 1/10 of the number of genera-
tions chosen for the GA run. At each predation, individuals were ranked according to their �it-
ness function value and the individuals in the lower quartile were replace by new, randomly 
generated individuals. 

 The �itness function evaluation consists of the following stages: inserting the acceleration 
functions’ parameters into VISSIM, simulating the network with the con�iguration of the indi-
vidual’s acceleration functions; reading the simulation outputs; extracting detector speeds from 
the report; and calculating the individual’s �itness. 

 The criterion for stopping the search was the number of generations, as the overall objective 
was to obtain the best �itness possible. At the end of its execution, the genetic algorithm issues 
two reports. The �irst one contains the con�igurations of the algorithm, the maximum and de-
sired acceleration functions for the best individual, the measurement of its �itness and the met-
rics concerning the crossover and mutation operations. The second report contains the best and 
worst individuals of each generation, as well as the maximum, average, minimum and standard 
deviation of the �itness of each population.  

 To validate the calibration, 12 out of the 57 trucks were removed from the calibration phase, 
3 from each category. The performance models for each truck category were calibrated sepa-
rately from each other. Several combinations of population size and number of generations were 
analyzed to �ind the one that delivered a good level of �itness with an acceptable processing 
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time. The combinations chosen for this study were: (1) population size of 85 individuals and 85 
generations, which required 7423 evaluations of the �itness function; and (2) population of 105 
individuals and 105 generations, demanding 11268 calculations of the �itness function value.  

6. RESULTS ANALYSIS 

Figures 6 and 7 show the default values for the maximum and desired acceleration functions 
(shown as HGV Vissim), as well as the best con�igurations for the four categories of trucks ob-
tained for two combinations of numbers of generations and population size. The limits of the 
calibrated acceleration functions refer to power/mass ratios ranging between 2.3 and 23.2 
kW/t, whereas the VISSIM default functions assume power/mass ratios from 7 to 30 kW/t. 

 

           
                     (a) Maximum accelera�on func�ons                                   (b) Desired accelera�on func�ons 

Figure 6. Maximum and desired acceleration functions obtained from 85 generations and 85 individuals. 

 

           
                     (a) Maximum accelera�on func�ons                                   (b) Desired accelera�on func�ons 

Figure 7. Maximum and desired acceleration functions obtained from 105 generations and 105 individuals. 

 

 It can be observed that, in general, the calibrated maximum acceleration functions are similar 
in format to the originals for speeds between 30 and 80 km/h. However, the calibrated values 
are slightly lower. Two hypotheses are raised to explain this phenomenon. First, it is likely that 
lower values are caused because the sampled trucks did not use all the engine power. As the 
drivers were not asked to drive in a speci�ic way, they probably did not use all the power pro-
vided by the engines. Therefore, the obtained acceleration values refer to the use of the power 
desired by the drivers rather than the maximum possible power. Furthermore, the maximum 
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power depends on the engine’s conditions (maintenance, age, etc.) and, therefore, the resulting 
functions are affected by the difference between nominal and real power. This hypothesis is 
corroborated by the maximum acceleration functions presented in Figure 6 and Figure 7, which 
are always lower than the original ones.  

 The calibrated desired acceleration function presented upper limits with a similar format to 
the original, between 0 and 80 km/h.  At the lower limits, the accelerations between 0 and 60 
km/h are signi�icantly lower than the default con�iguration, which suggests that the drivers 
were not using the maximum power. 

 It was observed that, in general, the different combinations of the number of generations/ 
population size generated calibrated functions with formats similar to each other for the range 
from 0 to 90 km/h. However, the acceleration values for speeds above 90 km/h differed signi�i-
cantly between the algorithm alternatives (number of generations, population size, among 
other issues), for the same category of trucks. This can be observed by comparing the functions 
in Figure 6 with those in Figure 7. This is probably because there are few observations of real 
speeds above 90 km/h.  

 Figure 8 shows the real and simulated speed pro�iles for the same truck. It can be observed 
that the simulated speed pro�iles are limited by the desired speed. It can also be noticed that 
the default performance model tends to overestimate the speed in a signi�icant part of the trip, 
whereas the calibrated model tends to the observed speed. It is also important to notice that 
VISSIM does not replicate illogical driver behavior, such as the speed reduction applied to the 
truck between stations 40 and 50 and between stations 155 and 160. Figure 9 also shows that 
the effect of having a greater population and a greater number of generations is not very notice-
able on the recalibrated performance model. 

 

 
Figure 8. Speed profiles for the same truck showing real and simulated data (Truck 44). 

 

7. VALIDATION OF THE RECALIBRATED MODEL 

Figure 9 summarizes the validation of the recalibrated truck performance model. The validation 
consisted in comparing observed and simulated speed pro�iles for trucks whose speed data 
were not used in the model calibration.  
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 The recalibrated models used in the simulations whose results are shown in Figure 9 were 
derived from the average acceleration values found for the trucks in each category, thus sup-
posed to represent a typical truck of that particular type. Consequently, it is normal to �ind 
greater differences in speed during the validation of the model. 

 

 

 
Figure 9. Comparison of observed speed profile vs. speed profile obtained with the default model and the recalibrated 

model, for four different trucks not included in the sample used for the calibration of the truck performance model. 

 

 Figure 9 shows that the behavior of all four trucks is consistent with the observed speed 
pro�ile, except for the illogical speed reductions that VISSIM cannot reproduce well – e.g., be-
tween stations 30 and 40 for the medium truck; and between stations 40 and 50 for the extra-
heavy, the medium and the light trucks.  

8. FINAL CONSIDERATIONS  

By using the proposed method, the maximum and desired VISSIM acceleration functions for 
Brazilian trucks could be calibrated. Based on the considerations adopted, it can be observed 
that the functions have satisfactory values for speeds between 0 and 90 km/h. Moreover, it 
should be highlighted that the limits for the power/mass ratio should be adjusted when using 
the calibrated functions. 

 A suggestion for future calibrations is to conduct an in-depth analysis to adopt the desired 
speed, given its importance not only for the VISSIM operation, but also for the evaluation of the 
functions’ adjustment.   

 Finally, we recommend analyzing the importance of calibrating different functions for each 
truck category. Increasing the number of executions of the algorithm would enable one to eval-
uate how signi�icant the differences are between categories. A second implication would be to 
obtain maximum and desired acceleration functions for a single truck category from the mean 
values obtained for the segregated truck categories.  
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