Avaliação da reutilização da areia de fundição em misturas asfálticas densas do tipo CAUQ

B. Coutinho Neto¹
Universidade da Amazônia, Coordenação de Engenharia Civil, Belém, Pará, Brasil

G. T. P. Fabbri²
Escola de Engenharia de São Carlos – USP, Departamento de Transportes, São Carlos, São Paulo, Brasil

Artigo Recebido: 10/09/2004 - Aprovado: 17/05/2005

RESUMO: Este trabalho apresenta um estudo de alternativa para o uso da areia de fundição, reutilizando-a na composição dos agregados para concreto asfáltico e desta forma contribuir para a minimização do impacto ambiental causado por este rejeito. Na avaliação das propriedades mecânicas de interesse à pavimentação foram realizados ensaios como resistência à tração, umidade induzida, módulo de resiliência, fluência uniaxial estática e cantabro. Para classificar os materiais/resíduo e avaliar o comportamento, em termos ambientais, da mistura asfáltica com areia de fundição em longo prazo, realizaram-se, respectivamente, os ensaios de classificação de resíduos e lixiviação com extrator soxhlet. A areia de fundição e a mistura asfáltica com este material incorporado foram classificadas, respectivamente, como resíduos Não-Inerte e Inerte; além disso, as misturas asfálticas apresentaram boas propriedades mecânicas. Assim, pode-se concluir que é viável a reutilização de areia de fundição na composição do agregado para misturas asfálticas densas do tipo concreto asfáltico.

ABSTRACT: This research presents an alternative study for the use of the foundry sand, reusing it in the composition of the aggregate for asphalt concrete and thus to contribute to minimize the environmental impact caused for this waste. Classification tests of solid wastes and leaching with soxhlet extractor were accomplished to classify, respectively, the materials/waste and to evaluate the behavior in environmental terms of the asphalt mixtures with foundry sand in long-term. To evaluate the mechanical properties, the mixtures were submitted to tests, as resilient modulus, static creep and cantabro. The foundry sand and the asphalt mixture with its incorporation were classified, respectively, as wastes No-inert and Inert, besides engineering properties indicate that mixtures are acceptable for constructing asphalt layers. Thus, it can be concluded that it is viable the reutilization of foundry sand in the aggregate composition for hot mix asphalt.

1 INTRODUÇÃO

A areia, geralmente quartzosa, após a utilização na indústria de fundição, torna-se um problema ambiental, pois fica contaminada por elementos e compostos químicos, como arsenário, bário, cádmio, cloreto, chumbo, fenóis, sódio e surfactantes. As indústrias de fundição brasileiras geraram, de janeiro a novembro de 2003, 2.083.581 toneladas de produtos fundidos, sendo a região Sudeste a maior geradora destes produtos, tendo a maior concentração no Estado de São Paulo (ABIFA, 2003). Segundo McIntyre et al. (1992), a cada tonelada de metal produzida, tem-se aproximadamente uma tonelada de resíduo de fundição, consequentemente, a quantidade deste resíduo gerada no Brasil em 2003 ultrapassou a dois milhões de toneladas. Com base nesses dados, conclui-se que o passivo ambiental das fundições no País é preocupante.

O reaproveitamento da areia de fundição, seja no reuso, ou na reciclagem (primária e secundária), traz grandes benefícios para o meio ambiente e para as indústrias do ramo. Com isto, contribui-se para diminuir a poluição do meio ambiente e a quantidade de recursos naturais utilizados, além de minimizar o problema que as indústrias têm com o destino final deste resíduo.

Essa pesquisa tem a finalidade de apresentar uma alternativa para o reaproveitamento desse resíduo industrial, utilizando-o na composição do agregado para misturas asfálticas densas do tipo Concreto Asfáltico Usinado a Quente (CAUQ). Assim, é necessário avaliar o potencial de poluição da areia de fundição quando incorporada à massa asfáltica, bem
como avaliar o desempenho da massa asfáltica, contendo areia de fundição, segundo as propriedades de engenharia, no que diz respeito à compatibilidade dessa areia reutilizada com o aglutinante asfáltico, refletida na adesividade, oxidação do ligante e permanência das propriedades ao longo do tempo. Além disso, é necessário também caracterizar as areias, tanto a de fundição como a virgem (antes da utilização no processo de fundição), e mistura asfáltica com incorporação de areia de fundição, segundo as normas ambientais.

2 FUNDIÇÃO

O processo de fabricação de metais, que por definição, segundo Kondic (1973), é qualquer técnica de fusão e vazamento de metais em moldes, sendo como objetivo a produção de peças com formas e dimensões previamente estabelecidas. As peças fundidas são obtidas pela solidificação do metal líquido em molde (uma mistura de areia, geralmente quartzosa, com outros elementos), que possa permanecer em contato com o fogo ou suportar calor elevado, sem alterações significativas em suas características (retratário) e que tenha a forma, em negativo, do produto final. Segundo Siegel et al. (1982), a fundição de uma peça metálica pode ser resumida, em síntese, em modelação, moldagem, macharia, fusão, vazamento, desmoldagem e rebabiação e limpeza. E ainda, segundo estes autores, os processos básicos de fundição são caracterizados pelo processo de moldagem e podem ser classificados em: areia verde; areia seca; areia-cimento; areia de macho; casca (Shell molding); moldes permanentes; moldes semipermanentes; fundição por centrifugação; processo CO₂ e processo de cera perdida ou por investimento (Investment casting).

A moldagem em areia ainda é responsável pela maior tonelagem de produção de peças fundidas. A justificativa para isto é a abundância desse material na natureza, tornando o processo mais econômico e por permitir produção de peças de qualidade, tanto em metais ferrosos como em não ferrosos. Segundo Mariotto (2000), estima-se que mais de 80% dos produtos fundidos sejam fabricados utilizando moldes confeccionados com areia aglomerada, sendo que o ligante mais usual é argila (moldagem em areia verde). Os processos que utilizam argila são empregados, geralmente, para confeccionar os moldes que dão forma às superfícies externas do produto fundido, sendo que para confeccionar os machos, que conformam as superfícies internas das peças, utilizam-se areias aglomeradas com resinas sintéticas que, geralmente, são de origem fenólica.

As indústrias de fundição brasileiras geram em torno de 2 milhões de toneladas ao ano de produtos fundidos, sendo a região Sudeste a maior geradora destes produtos, tendo a maior concentração no Estado de São Paulo. A produção de fundidos no período de janeiro a novembro de 2003, neste Estado, foi de 723.001 t e a produção do país no mesmo período foi de 2.083.581 t (ABIFA, 2003).

O reaproveitamento da areia de fundição se faz necessário para que se evite a disposição inadequada desses resíduos e também porque atividade do ramo é grande consumidora de insumos naturais (areia, argila, por exemplo). Desta forma, estar-se-ia minimizando o uso destes recursos e contribuindo para a diminuição da poluição do meio ambiente. A possibilidade da reciclagem secundária do resíduo de fundição está relacionada, principalmente, com a construção civil.

Javed e Lovell (1995), em Indiana, nos Estados Unidos, realizaram um estudo sobre a aplicação de areia de fundição em aterro e subleito de rodovias, como agregado fino em material de baixa resistência controlada (Flowable fill) e no concreto asfáltico. Concluíram, entre outras, que as areias de fundição estudadas demonstraram boas propriedades físicas e mecânicas e que aquelas (areias de fundição), provenientes do processo de moldagem a verde de metais ferrosos, têm baixa possibilidade de contaminar o meio ambiente. Partridge et al. (1999) pesquisaram sobre a reutilização de areia de fundição para a construção de aterro de rodovias em Indiana nos Estados Unidos. Bina et al. (2003) realizaram uma pesquisa sobre a utilização de areia de fundição descartada na pavimentação asfáltica armada (colocação de uma camada composta de tela de aço e lama asfáltica (1,0 a 1,5 cm de espessura) entre duas camadas de Concreto Asfáltico Usinado a Quente) e concluíram que o emprego de areia de fundição para a pavimentação asfáltica armada é ambientalmente viável e que esta utilização parece ser mais segura, ambientalmente, do que o risco de descarte não controlado ou do risco de acidentes em aterros industriais.

3 MÉTODO DE TRABALHO

Para avaliar se a areia de fundição (resíduo industrial), quando incorporada à massa asfáltica, contaminaria o meio ambiente e desta forma trouxesse risco potencial à saúde, foram realizados os seguintes ensaios: lixiviação de resíduos (ABNT-NBR 10005/87); solubilização de resíduos (ABNT-NBR 10006/87); massa bruta (ABNT-NBR 10004/87) e lixiviação alterada com extrator Soxhlet.

O ensaio de lixiviação de resíduos foi executado com o objetivo de extrair substâncias contidas na areia de fundição, contaminantes (fenóis, metais pesados e outras) ou não do meio ambiente, por meio de lavagem ou percolação e desta forma, classificar esse resíduo conforme o seu potencial contaminante (ABNT-NBR 10004/87). Este ensaio foi realizado de acordo com os procedimentos descritos na NBR 10005/87. Os valores máximos permitidos para as diversas substâncias contaminantes são apresentados no ANEXO G, Listagem nº 7 (Concentração – limite máximo no extrato obtido no teste de lixiviação) da NBR 10004/87.
O ensaio de solubilização de resíduos (NBR 10006/87) foi realizado com o intuito de diferenciar os resíduos da classe II (não-inertes), que é o caso da área de fundição utilizada neste estudo, dos resíduos da classe III (inertes), sendo aplicado somente para resíduo no estado físico sólido. Os valores máximos permitidos (Limites máximos no extrato - mg/l) são os que constam na NBR 10004/87 (ANEXO H, Listagem nº 8, Padrões para o teste de solubilização).

Os ensaios para a classificação de resíduos, lixiviação, solubilização e massa bruta, foram realizados em amostras de área de fundição (resíduo de fundição), de areia virgem (areia antes da utilização no processo de fundição), de massa asfáltica contendo 10% de areia virgem e de massa asfáltica contendo 15% de área de fundição (ambas não compactadas).

O ensaio de lixiviação alterada com extrator soxhlet foi concebido pelos autores e executado em amostra de massa asfáltica compactada, com areia de fundição incorporada, para verificar se a areia de fundição, na presença de agregados e principalmente asfalto, liberaria substâncias tóxicas, em concentrações tais, que viesssem a comprometer o meio ambiente. Assim, o objetivo da realização desse teste foi avaliar o comportamento do resíduo incorporado a pavimentos de vias, em termos ambientais e em longo prazo, quando submetido à ação de agentes naturais de alteração por meio de solicitações físicas e físico-químicas.

Para a execução do ensaio de lixiviação alterada foi utilizado um corpo-de-prova cilíndrico compactado (diâmetro de 101,8 mm, altura de 63,48 mm e peso de 1255,5 gf) de mistura asfáltica com 15% de areia de fundição (≈ 190gf) e com volume de vazios de, aproximadamente, 5%. A duração do ensaio foi de três meses (90 dias) em sistema de “lavagem” intermitente, com água percolando por, aproximadamente, 12 horas, seguida, por igual período sem percolação. Foram programadas cinco coletas da solução com os lixiviados. Em cada coleta, o volume de água destilada utilizada foi de 2,1 litros, sendo este extrato destinado à análise química. O extrato coletado, conforme a programação apresentada na Tabela 1, foi submetido à análise química nos Laboratórios de Saneamento da EESC/USP e de Recursos Hídricos da UNAERP/SP para quantificar as substâncias presentes e, desta forma, avaliar se as concentrações estavam compatíveis com os padrões de potabilidade de água, conforme a listagem nº 8 da norma ABNT-NBR 10004/87 (ANEXO H).

A alteração ativada ocasiona uma lixiviação contínua (durante o ciclo, considerado neste estudo de 12 horas), em virtude da água percolar pela amostra a uma temperatura alta (em torno de 60°C), possibilitando a “lavagem” de substâncias nela contidas (no caso, mistura asfáltica compactada) para a solução. Nesse processo, a água ferve, o vapor ascende passo pelo material asfáltico, entra em contato com o condensador de vidro, se liquefaz e pinga sobre a superfície da amostra, lavando-a (Fig. 1).

Os ensaios de alteração, geralmente, impõem condições mais severas do que as que normalmente ocorrem, como, por exemplo, em relação à temperatura e umidade, que neste ensaio são muito mais elevadas que as encontradas no meio ambiente.

Figura 1. Equipamento utilizado para o ensaio de lixiviação com extrator soxhlet.

Tabela 1. Cronograma de coleta do extrato resultante do ensaio de lixiviação com extrator soxhlet.

<table>
<thead>
<tr>
<th>Coletas</th>
<th>Tempo de lixiviação (horas)</th>
<th>Duração do ensaio (dia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>primeira</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>segunda</td>
<td>84</td>
<td>7</td>
</tr>
<tr>
<td>terceira</td>
<td>252</td>
<td>21</td>
</tr>
<tr>
<td>quarta</td>
<td>540</td>
<td>45</td>
</tr>
<tr>
<td>quinta</td>
<td>1080</td>
<td>90</td>
</tr>
</tbody>
</table>

Além dos ensaios de avaliação do comportamento das misturas em termos ambientais e dos ensaios de dosagem MARSHALL (DNER-ME 043/95), foram realizados ensaios de dano por umidade induzida (AASHTO T 283-99), cantabro (NLT-325/86), fluência por compressão uniaxial estática, resistência à tração por compressão diametral (DNER-ME 138/94) e módulo de resistência (DNER-ME 133/94) para avaliar o desempenho do concreto asfáltico obtido com a areia de fundição.

O ensaio de umidade induzida foi executado para avaliar a susceptibilidade da mistura ao descolamento (stripping) da película asfáltica do agregado em longo prazo (quatro a 12 anos, segundo AASHTO T 283/99) e avaliar ainda a eventual necessidade de se utilizar um aditivo antistripping (dope). A areia de fundição é de natureza silícosa (hidrófila) e apresenta em sua superfície uma fina camada composta de carvão queimado, argila, resina, pó e, dependendo da natureza do produto fundido, resíduos de metais ferrosos ou não ferrosos, que podem dificultar a adesividade do filme asfáltico, resultando em perda de agregado fino (a areia) e, consequentemente, na deterioração acelerada.
do pavimento. Os corpos-de-prova podem ser preparados em laboratório ou extraídos da pista e devem ter diâmetro de 101,6 mm (4") e altura de 63,5 mm (2,5") ou 150 mm de diâmetro (6") e altura de 95 mm (3,75"), com volume de vazios de 7 ± 1% ou o esperado no campo (item 6.5 da AASHTO T 283/99). Neste estudo, os corpos-de-prova foram de 4" de diâmetro (101,6 mm) e 2,5" de altura (63,5 mm), com 4% de vazios (volume de vazios esperado no campo), tendo sido os ensaios conduzidos como o padronizado na AASHTO T 283/99.

Os ensaios de fluência por compressão axial estática foram executados tomando-se como base o descrito em diversos trabalhos (De Hilster e Van de Loo, 1977 (SHELL); Von Quintus et al., 1991 (AAMAS); Little et al., 1993; Coelho, 1996; Mugayar, 2003). O procedimento de ensaio constou, em linhas gerais, das seguintes etapas: preparação dos corpos-de-prova (polimento e medições); condicionamento em estufa, na temperatura de 40°C, por pelo menos seis horas; precondicionamento com dois minutos de aplicação da tensão de ensaio (nesta pesquisa, 0,1 e 0,4 MPa), seguido de um período de descarregamento ou recuperação do corpo-de-prova de cinco minutos; imediatamente, após o período de recuperação, iniciava-se o ensaio, submetendo os corpos-de-prova aos parâmetros preestabelecidos (tensão e temperatura) durante 60 minutos; após esse período, o carregamento é retirado automaticamente e inicia-se o período de recuperação, com duração de 15 minutos; durante as fases de carregamento (fluência) e de recuperação, os deslocamentos são registrados automaticamente em intervalos de tempo regulares.

As deformações específicas, elásticas, viscosas ou visco-plásticas (\(e_i\)), obtidas dos deslocamentos axiais medidos em cada LVDT, são calculadas mediante a expressão 1. Os parâmetros indicadores da sensibilidade à deformação permanente da mistura, são a deformação total média para uma hora de carregamento, a inclinação do estado secundário da curva deformação versus tempo de carregamento (m) e o módulo de fluência (S_e), que podem ser calculados pelas expressões 1, 2 e 3, respectivamente. O estágio secundário (trecho de fluência constante) é determinado entre 1000 e 3600 segundos de tempo de ensaio.

\[
e_i = \frac{\Delta h_i}{h_0}
\]

(1)

\[
m = \frac{\log(\frac{e_{3600}}{e_{1000}})}{0,5563}
\]

(2)

\[
S_e = \sigma / e_i
\]

(3)

onde:

\(\Delta h_i\): variação da altura do corpo-de-prova em qualquer instante \(t\) [mm];

\(h_0\): medida inicial da altura do corpo-de-prova [mm];

\(\sigma\): nível de tensão do ensaio [MPa].

O ensaio cantabro tem a finalidade de avaliar a perda por desgaste de misturas asfálticas empregando o equipamento de abrasão Los Angeles. Ele consiste, basicamente, em introduzir o corpo-de-prova na máquina de abrasão Los Angeles, sem nenhuma carga abrasiva e submetê-lo a 300 revoluções, no caso de concreto asfáltico usinado a quente. Esse ensaio permite também avaliar indiretamente a coesão, assim como a resistência à desagregação da mistura perante a succão e os efeitos abrasivos originados pelo tráfego. A determinação da perda por desgaste é a média das massas perdidas dos corpos-de-prova ensaiados individualmente (expressão 4). Os ensaios foram executados conforme a norma espanhola NLT-325/86.

\[
P = \left(\frac{P_1 - P_2}{P_1}\right) \times 100
\]

(4)

onde:

P: porcentagem de massa perdida [%];

P_1 e P_2: respectivamente, massa inicial e final do corpo-de-prova [g].

O ensaio de resistência à tração direta (por compressão diametral estática) foi realizado conforme o método DNER-ME 138/94, com velocidade de deformação de 0,8 ± 0,1 mm/s e temperatura de 25°C, até a ruptura do corpo-de-prova por separação em duas metades, segundo o plano diametral vertical. A resistência à tração obtida deste ensaio serve como parâmetro para o ensaio do módulo de resilência, que no caso de ser realizado sob tensão controlada, deve utilizar nível de tensão menor ou igual a 30% dessa resistência (DNER-ME 133/94).

A determinação do módulo de resilência foi feita sempre em duas direções, 0 e 90°, em corpos-de-prova moldados segundo o método Marshall. Os ensaios foram realizados em sala climatizada, com temperatura em torno de 25°C, onde os corpos-de-prova permaneceram por alguns minutos antes do início dos ensaios e foram seguidos os procedimentos descritos no método de ensaio DNER-ME 133/94.

Para a execução dos ensaios de fluência por compressão uniaxial estática e de módulo de resilência foi utilizada uma prensa com sistema pneumático de aplicação de carga. Um programa computacional, desenvolvido em Labview®, controlou a aquisição das leituras dos deslocamentos (por LVDTs) e das cargas, a aplicação e a retirada da carga, assim como o armazenamento de dados.

4 APRESENTAÇÃO DOS RESULTADOS

Nós itens seguintes são apresentados os resultados da avaliação das misturas tanto do ponto de vista de suas
utilizações como materiais de construção em obras viárias, assim como do ponto de vista de riscos ambientais.

4.1 Resultados dos ensaios de avaliação de comportamento mecânico

Na Tabela 2 são exibidos os resultados da dosagem Marshall (DNER-ME 043/95) e os valores da superfície específica e da espessura da película asfáltica, calculados para as misturas com 10% de areia de fundição (AF10%) e a de referência, com 10% de areia virgem (AV10%), em função dos teores de asfalto utilizados. Já na Tabela 3 são apresentados os resultados dos ensaios que avaliaram as propriedades mecânicas das misturas: cantabro, umidade induzida, resistência à tração por compressão diametral, módulo de resistência por tração indireta e fluência por compressão uniaxial estática, tendo sido, este último, realizado em dois níveis de tensão (0,1 e 0,4 MPa).

Tabela 2. Resultados da dosagem Marshall, superfície específica e espessura de película asfáltica.

<table>
<thead>
<tr>
<th>MISTURAS</th>
<th>AF10%</th>
<th>AV10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teor de Vazios</td>
<td>Teor de Vazios</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>4%</td>
<td>5%</td>
</tr>
<tr>
<td>Teor de Asfalto (%)</td>
<td>6,00</td>
<td>5,50</td>
</tr>
<tr>
<td>Teor de Agregado (%)</td>
<td>94,00</td>
<td>94,50</td>
</tr>
<tr>
<td>Densidade Teórica Máxima</td>
<td>2,584</td>
<td>2,606</td>
</tr>
<tr>
<td>Densidade Aparente</td>
<td>2,506</td>
<td>2,502</td>
</tr>
<tr>
<td>Estabilidade (N)</td>
<td>11520</td>
<td>12650</td>
</tr>
<tr>
<td>Fluência (mm)</td>
<td>3,55</td>
<td>2,90</td>
</tr>
<tr>
<td>Coeficiente de Suporte Marshall (N/mm)</td>
<td>3245</td>
<td>4362</td>
</tr>
<tr>
<td>Vazios preenchidos por asfalto (%)</td>
<td>14,71</td>
<td>13,51</td>
</tr>
<tr>
<td>Relação Betume -Vazios (%)</td>
<td>83</td>
<td>77</td>
</tr>
<tr>
<td>Vazios do Agregado Mineral (%)</td>
<td>17,71</td>
<td>17,51</td>
</tr>
<tr>
<td>S (m²/kg)</td>
<td>12,68</td>
<td>12,68</td>
</tr>
<tr>
<td>EPA (μm)</td>
<td>4,95</td>
<td>4,51</td>
</tr>
</tbody>
</table>

Tabela 3. Resultados dos ensaios para avaliação das propriedades mecânicas asfálticas.

<table>
<thead>
<tr>
<th>MISTURAS</th>
<th>AF10%</th>
<th>AV10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSAIOS/PARÂMETROS</td>
<td>Teor de Asfalto</td>
<td>Teor de Asfalto</td>
</tr>
<tr>
<td>6,00%</td>
<td>5,50%</td>
<td>5,10%</td>
</tr>
<tr>
<td>Cantabro – P (%)</td>
<td>6,17</td>
<td>7,60</td>
</tr>
<tr>
<td>Umidade Induzida – RRT (%)</td>
<td>NR</td>
<td>78</td>
</tr>
<tr>
<td>RT - Resistência à Tração (MPa)</td>
<td>1,43</td>
<td>1,51</td>
</tr>
<tr>
<td>MR - Módulo de Resiliência (MPa)</td>
<td>5372</td>
<td>6663</td>
</tr>
<tr>
<td>Relação MR/RT</td>
<td>3756</td>
<td>4412</td>
</tr>
<tr>
<td>Fluência por Compressão Uniaxial Estática (Tensão = 0,1 MPa - De Hilster e Van de Loo, 1977)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformação Total (%)</td>
<td>0,22</td>
<td>0,28</td>
</tr>
<tr>
<td>m</td>
<td>0,125</td>
<td>0,088</td>
</tr>
<tr>
<td>Recuperação (%)</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>Módulo de Fluência - 3600 s (MPa)</td>
<td>43</td>
<td>37</td>
</tr>
<tr>
<td>Módulo de Fluência - 4500 s (MPa)</td>
<td>119</td>
<td>63</td>
</tr>
<tr>
<td>Fluência por Compressão Uniaxial Estática (Tensão = 0,4 MPa – Little et al., 1993)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformação Total (%)</td>
<td>0,35</td>
<td>0,36</td>
</tr>
<tr>
<td>m</td>
<td>0,061</td>
<td>0,087</td>
</tr>
<tr>
<td>Recuperação (%)</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>Módulo de Fluência - 3600 (MPa)</td>
<td>118</td>
<td>109</td>
</tr>
<tr>
<td>Módulo de Fluência - 4500 (MPa)</td>
<td>371</td>
<td>298</td>
</tr>
</tbody>
</table>

Revista TRANSP-RITS, vol.XL, pp. 50-57, dezembro 2004
Na Figura 2 são apresentados, no mesmo gráfico, a Resistência à Tração e a Perda de Massa no ensaio Cantabro versus o teor de asfalto e na Figura 3, as relações do módulo de resiliência com a resistência à tração e o módulo de resiliência, também em um mesmo gráfico e em função do teor de asfalto.

![Figura 2. Resistência à Tração e Perda de Massa no Ensaio Cantabro versus Teor de Asfalto.](image)

Figura 3. Relação do Módulo de Resiliência pela Resistência à Tração e Módulo de resiliência versus o Teor de Asfalto.

4.2 Resultados dos ensaios de avaliação de risco ambiental

Os resultados da avaliação do risco ambiental referem-se aos seguintes ensaios: lixiviação, solubilização e massa bruta das areias virgem e de fundição utilizadas,

<table>
<thead>
<tr>
<th>Parâmetros</th>
<th>Unidade</th>
<th>LQ</th>
<th>1º C</th>
<th>2º C</th>
<th>3º C</th>
<th>4º C</th>
<th>5º C</th>
<th>NBR 10004</th>
<th>VMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsênio (As)</td>
<td>mg/l</td>
<td>0,001</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0,050</td>
<td></td>
</tr>
<tr>
<td>Bário (Ba)</td>
<td>mg/l</td>
<td>0,010</td>
<td><0,010</td>
<td><0,010</td>
<td><0,010</td>
<td>0,028</td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cádmio (Cd)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chumbo (Pb)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,019</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cianetos (CN)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cromo total (Cr)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,010</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice de Fenôsis</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoretos (F)</td>
<td>mg/l</td>
<td>0,010</td>
<td>0,030</td>
<td>0,120</td>
<td>0,280</td>
<td>1,260</td>
<td>1,500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercúrio (Hg)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitratos (N-NO₃)</td>
<td>mg/l</td>
<td>0,010</td>
<td>0,135</td>
<td>0,283</td>
<td>0,564</td>
<td>9,084</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prata (Ag)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,003</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selênio (Se)</td>
<td>mg/l</td>
<td>0,010</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0,010</td>
<td></td>
</tr>
<tr>
<td>Alumínio (Al)</td>
<td>mg/l</td>
<td>0,001</td>
<td>0,010</td>
<td>0,320</td>
<td>0,610</td>
<td>1,210</td>
<td>0,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloretos (Cl)</td>
<td>mg/l</td>
<td>0,500</td>
<td>0,260</td>
<td>0,750</td>
<td>1,300</td>
<td>1,630</td>
<td>250,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobre (Cu)</td>
<td>mg/l</td>
<td>0,001</td>
<td>0,004</td>
<td>0,008</td>
<td>0,009</td>
<td>0,029</td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza Total (CaCO₃)</td>
<td>mg/l</td>
<td>1,000</td>
<td>5,850</td>
<td>11,290</td>
<td>17,560</td>
<td>22,99</td>
<td>500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferro (Fe)</td>
<td>mg/l</td>
<td>0,050</td>
<td>0,056</td>
<td>0,124</td>
<td>0,170</td>
<td>0,409</td>
<td>0,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganês (Mn)</td>
<td>mg/l</td>
<td>0,001</td>
<td><0,001</td>
<td><0,001</td>
<td><0,001</td>
<td>0,015</td>
<td>0,100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sódio (Na)</td>
<td>mg/l</td>
<td>0,100</td>
<td>3,550</td>
<td>11,910</td>
<td>27,800</td>
<td>69,600</td>
<td>200,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surfactantes</td>
<td>mg/l</td>
<td>0,010</td>
<td><0,100</td>
<td><0,100</td>
<td>0,108</td>
<td>0,403</td>
<td>0,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfatos (SO₄)</td>
<td>mg/l</td>
<td>1,000</td>
<td><1,000</td>
<td><1,000</td>
<td>5,850</td>
<td>12,95</td>
<td>400,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinco (Zn)</td>
<td>mg/l</td>
<td>0,001</td>
<td>0,003</td>
<td>0,059</td>
<td>0,059</td>
<td>0,134</td>
<td>5,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8,70</td>
<td>8,75</td>
<td>8,85</td>
<td>9,90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Revista TRANSP, v. XI, p. 50-57, dezembro 2004
isoladamente, isto é, antes de suas inclusões na massa asfáltica e das misturas asfálticas com a incorporação destas areárias, no caso da areia de fundição, na situação mais desfavorável (15% de areia de fundição). Apresentam-se, como material de controle, os resultados desses ensaios para a areia virgem, isoladamente, e para a massa asfáltica com a sua inclusão no teor de 10%. Os resultados da análise química dos extratos do ensaio de lixiviação alterado com extrator soxhlet em corpo-de-prova compactado (5% de vazios) são apresentados em quatro condições distintas, a saber: com 12 h (um dia), 84 h (sete dias), 252 h (21 dias) e 792 h (66 dias) de lixiviação.

Segundo a BIOAGRI AMBIENTAL LTDA (2003a; 2003b), a areia de fundição foi classificada como resíduo Classe II – Não-inerte, em virtude das concentrações para os parâmetros fenóis, fluoretos, alumínio, cloretos e ferro ultrapassarem os limites máximos no extrato para o teste de solubilização (ANEXO H - Listagem nº 8 da NBR 10004/87). A areia virgem foi classificada como resíduo Classe III – Inerte, em função das concentrações nos parâmetros obtidos do lixiviado, do solubilizado e da massa bruta estarem abaixo dos valores permitidos. Já para as amostras de massas asfálticas com 10% de areia virgem e com 15% de areia de fundição, as concentrações dos parâmetros não ultrapassaram os limites máximos nos extratos do lixiviado e do solubilizado e na massa bruta, fixados pela NBR 10004/87; dessa forma, as misturas foram classificadas como resíduos de Classe III – Inerte. Os resultados do ensaio de lixiviação alterada com extrator soxhlet, para as 1ª, 2ª, 3ª e 5ª coletas estão apresentados na Tabela 4. Esses resultados são as concentrações acumuladas do parâmetro analisado, em mg/l, baseado nos padrões para o teste de solubilização (ANEXO H Listagem nº 8 da NBR 10004/87). A quarta coleta foi desprezada devido a problemas e, portanto, o período referente à quinta coleta passou a ser 792 horas (1080h – 288h).

5 DISCUSSÃO DOS RESULTADOS

Os parâmetros Marshall (Tab. 2), tanto para a mistura com areia de fundição (10%AF) como para a mistura padrão (10%AV), nos volumes de vazios estudados, estão dentro dos limites esperados.

Já no ensaio Cantabro as misturas com areia de fundição (Tab. 3 e Fig. 2) apresentam maior desgaste que as de referência. O maior valor de perda de massa para a mistura com areia de fundição é de 10,10% (teor de asfalto de 5,10% e Vv médio de 4,84%), enquanto que o maior desgaste para a de referência é de 7,60% (teor de asfalto de 5,00% e Vv médio de 5,21%), sendo que as perdas de massa diminuem com o aumento do teor de asfalto (Fig. 2). Entretanto, os valores de perda de massa encontrados são compatíveis com os recomendados para misturas asfálticas densas contendo areia.

Os resultados dos ensaios de dano por umidade induzida, realizados apenas em amostras com volume de vazios igual a 4%, indicam que as relações da resistência à tração (RRT) para as duas misturas são superiores a 70%, sendo o valor mais favorável ou maior, da mistura com areia de fundição (Tab. 3).

No caso do ensaio de resistência à tração por compressão diamestral, as misturas apresentam valores muito parecidos, não mudando expressivamente com o teor de asfalto, como pode ser observado na Tabela 3 e na Figura 2.

Nos ensaios de módulo de resilência e nas relações módulo de resilência/resistência à tração, tanto a mistura com 10% de areia de fundição quanto à com 10% de areia virgem apresentam valores elevados (Tab. 3 e Fig. 3). Na Figura 3 nota-se ainda que o módulo de resistência da mistura com 10% de areia de fundição decresce com o teor de asfalto, o que não acontece com a mistura com 10% de areia virgem e que as relações módulo de resistência/comportamento para as duas misturas.

Analisando os resultados referentes aos ensaios de fluência por compressão uniaxial estática (Tab. 3), nos dois níveis de tensão (0,1 e 0,4 MPa), verifica-se que, de um modo geral, os parâmetros de ensaio são mais favoráveis (deformação total e inclinação do estado secundário menores e recuperação e módulo de fluência maiores) para a mistura padrão (AV 10%). Isto acontece principalmente no teor ótimo de asfalto (4% de vazios), que para a mistura padrão é 5,30% e para a com 10% de areia de fundição, 5,50%. Com base na literatura consultada, pode-se afirmar que as duas misturas apresentam baixa suscetibilidade à deformação permanente e poderiam ser utilizadas para revestimento de vias com alta intensidade de tráfego.

O resultado da classificação da areia de fundição, como resíduo Classe II - Não-Inerte, foi o esperado, visto que ela é oriunda de um processo de moldagem com resina fenólica e os metais conformados, de natureza tanto ferrosa quanto não ferrosa. Contudo, após a sua incorporação à mistura asfáltica, a mistura resultante foi classificada como resíduo Classe III – Inerte.

Esperava-se que houvesse alguma retenção das substâncias contaminantes após o envolvimento deste material/resíduo pelo asfalto, o que parece ter acontecido. Quanto ao ensaio de lixiviação alterada com extrator soxhlet (Tab. 4), verificou-se que a partir da 2ª coleta, a concentração de alumínio (acumulada) no extrato lixiviado apresentou-se maior que o valor máximo permitido pela NBR 10004/87 e que no extrato da 5ª coleta, os parâmetros ferro e surfactantes também ultrapassaram os limites fixados pela norma. Apesar de esses valores ultrapassarem os limites permitidos, vale ressaltar que as condições (temperatura e umidade) utilizadas nesse ensaio foram muito mais severas do que as que ocorrem na natureza.

6 CONCLUSÃO

Pelo exposto, pode-se concluir que o reaproveitamento de areia de fundição em misturas asfálticas densas é viável, tanto do ponto de vista ambiental, como no que diz respeito às propriedades mecânicas de interesse à pavimentação.
Essa afirmação pode ser feita pois as misturas asfálticas (3, 4 e 5% de vazios) contendo 10% deste resíduo apresentaram propriedades mecânicas de interesse à pavimentação satisfatórias e as análises químicas realizadas em amostras soltas de massa asfáltica, contendo 15% de areia de fundição, caracterizaram esse material (misturas asfálticas) como resíduo Classe III - Inerte. Além disso, as análises químicas efetuadas nos extratos coletados no ensaio de lixiviação alterada com extrator soxhlet mostraram que parâmetros importantes, como os fenóis, não se apresentaram acima dos limites previstos na norma (ABNT NBR-10004/87).

AGRADECIMENTOS

Os autores agradecem à Universidade da Amazônia (UNAMA), à Fundação Instituto para o Desenvolvimento da Amazônia (FIDES) e ao Centro Federal de Educação Tecnológica do Pará (CEFET-PA) pelos suportes financeiros para o desenvolvimento deste trabalho.

REFERÊNCIAS BIBLIOGRÁFICAS

Bina, P.; Castro, P. R. F. de; ALVES, J. H. (2003) Utilização de areia de fundição descartada na pavimentação: como aprovar e transformar resíduo em faturamento. 34ª reunião anual de pavimentação – Campinas/SP.

BIOAGRI AMBIENTAL LTDA (2003a) Caracterização de resíduos segundo NBR 10004 – Areia virgem. Boletim de análise N° 1347/03 – amostra N° 03656/03. Piracicaba/SP.

CONTATOS

1Nome: Benedito Coutinho Neto
E-mail: bcoutin@sc.usp.br

2Nome: Glaucio Tullio Pessa Fabbri
E-mail: glaucio@sc.usp.br